首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1283篇
  免费   238篇
  国内免费   57篇
化学   433篇
晶体学   6篇
力学   56篇
综合类   1篇
数学   7篇
物理学   1075篇
  2024年   4篇
  2023年   50篇
  2022年   60篇
  2021年   82篇
  2020年   75篇
  2019年   11篇
  2018年   52篇
  2017年   89篇
  2016年   83篇
  2015年   39篇
  2014年   139篇
  2013年   45篇
  2012年   102篇
  2011年   77篇
  2010年   73篇
  2009年   75篇
  2008年   59篇
  2007年   64篇
  2006年   66篇
  2005年   46篇
  2004年   44篇
  2003年   33篇
  2002年   28篇
  2001年   18篇
  2000年   19篇
  1999年   22篇
  1998年   25篇
  1997年   18篇
  1996年   20篇
  1995年   17篇
  1994年   5篇
  1993年   5篇
  1992年   5篇
  1991年   4篇
  1990年   6篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   4篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有1578条查询结果,搜索用时 68 毫秒
21.
To date, there is no method to measure non-destructively the modulus of trabeculae within cancellous bone, whilst retaining its structural integrity. In this study ultrasonic scanning, coupled with microCT imaging, is employed to determine trabeculae modulus along the three major anatomical axes non-destructively. The proposed method allows cancellous bone specimens to remain intact, for possible use in subsequent studies. Volume rendering of the microCT images allows three-dimensional visualization of cancellous bone specimens to be tested. This facilitates trabeculae selection and accurate measurement of distance traveled by the ultrasonic wave, thus yielding a good degree of confidence in the acoustic velocity measured. For all the three principal anatomical directions, the measured acoustic speeds ranged from 2,115 to 3,077 m/s, giving an average of 2,505 m/s. Average wave velocities in the superior–inferior, medial–lateral and anterior–posterior anatomical directions were found to be 2,295, 2,469 and 2,754 m/s, respectively; the differences corresponding to the three directions do not appear to be significant. Subsequently, the modulus was then determined using elastic wave propagation theory.  相似文献   
22.
For the analysis of ultrasonic cavitation erosion on the surface of materials, the ultrasonic cavitation erosion experiments for AlCu4Mg1 and Ti6Al4V were carried out, and the changes of surface topography, surface roughness, and Vickers hardness were explored. Cavitation pits gradually expand and deepen with the increase of experiment time, and Ti6Al4V is more difficult to erode by cavitation than AlCu4Mg1. After experiments, the cavitation damage characteristics such as the single pit, the rainbow ring area, the fisheye pit, and some small pits were observed, which can be considered to be induced by a single micro-jet impact, ablation effect caused by the high temperature, micro-jet impingement with a sharp angle, and multibeam micro-jets coupling impact or negative pressure in the local area produced by micro-jet impact, respectively. The surface roughness and Vickers hardness of the material increase slowly after rapid growth at different points in time as the experiment time increases. With the increase of the ultrasonic amplitude, both of them first increase and then decrease after the ultrasonic amplitude is greater than 10.8 μm. The increases in surface roughness and Vickers hardness tend to decrease as the viscosity coefficient increases. Ultrasonic cavitation can cause submicron surface roughness and increase surface hardness by 20.36%, so it can be used as a surface treatment method.  相似文献   
23.
Residual oil, the residue after the distillation of crude oil, imposes deleterious effects on refinery due to its high viscosity and asphaltene content. In this context, ultrasonic technology has been widely applied in refining processes given its high efficiency and minimal environmental impacts. To guide the selection of operation parameters, in this work, we probed the effect of treatment duration, power, and hydrogen donor on the characteristics of residual oil under ultrasonic treatments. Underlying mechanisms of ultrasonic treatments, in the absence and presence of hydrogen donors, were verified through systematically analyzing viscosity, component conversion, molecular weight, hydrogen distribution, and functional groups of residual oil. While viscosity reductions under low-power density treatment are caused by colloidal system disaggregation, high-power density treatment can bring in both chemical bond cleavage and colloidal system disaggregation. In addition, adding hydrogen donor can effectively prevent radical recombination, and thus increases the yield of saturate. These results provide fundamental understandings on the effects of ultrasonic treatments.  相似文献   
24.
In this study, we proposed ‘switching ultrasonic amplitude’ as a new strategy of applying ultrasonic energy to prepare a hybrid of buckminsterfullerene (C60) and gallium oxide (Ga2O3), C60/Ga2O3. In the proposed method, we switched the ultrasonic amplitude from 25% to 50% (by 5% amplitude per 10 min, within 1 h of ultrasonic irradiation) for the sonochemical treatment of a heterogeneous aqueous mixture of C60 and Ga2O3 by a probe-type ultrasonic horn operating at 20 kHz. We found that compared to the conventional techniques associated with high amplitude oriented ultrasonic preparation of functional materials, switching ultrasonic amplitude can better perform in preparing C60/Ga2O3 with respect to avoiding titanium (Ti) as an impurity generating from the tip erosion of a probe-type ultrasonic horn during high amplitude ultrasonic irradiation in an aqueous medium. Based on SEM/EDX analysis, the quantity of Ti (wt.%) in C60/Ga2O3 prepared by the proposed technique of switching ultrasonic amplitude was found to be 1.7% less than that prepared at 50% amplitude of ultrasonic irradiation. The particles of C60/Ga2O3 prepared by different modes of amplitude formed large (2–12 μm) aggregates in their solid phase.Whereas, in the aqueous medium, they were found to disperse in their nano sizes. The minimum particle size of the as-synthesized C60/Ga2O3 in an aqueous medium prepared by the proposed method of switching ultrasonic amplitude reached to approximately 467 nm. Comparatively, the minimum particle sizes were approximately 658 nm and 144 nm, using 25% and 50% amplitude, respectively. Additionally, Ga2O3 went under hydration during ultrasonic irradiation. Moreover, due to the electron cloud interference from C60 in the hybrid structure of C60/Ga2O3, the vibrational modes of Ga2O3 were Raman inactive in C60/Ga2O3.  相似文献   
25.
Calcium alginate (CaAlg) beads were prepared using ultrasound for use in the removal of lead from natural and wastewaters by ion exchange. Ultrasound was applied in a batch mode with an ultrasonic bath or in a flow mode using an ultrasonic clamp-on device. For comparison purposes the synthesis was performed in batch mode in the absence of the ultrasound. The beads prepared using ultrasound showed a greater ion exchange capability which could be ascribed to a larger specific surface area as a result of surface roughening induced by cavitation.Scanning Electron Microscopy (SEM) images revealed that the roughening was in the form of corrugation for the product with the best ion exchange capability obtained in the flow process where preformed CaAlg droplets were subjected to ultrasound during the setting process. These beads performed 11% better for lead removal than those synthesized in the absence of ultrasound.  相似文献   
26.
This work discusses the influence of changes to ultrasound (US) parameters over the nickel cobalt (Ni-Co) metal thin film properties produced by supercritical CO2 (SC-CO2) electroplating. Additionally, Ni-Co films were produced by conventional electroplating and silent SC-CO2 and compared against each other.The discussion on metal thin film properties revolves around variations to the bath type ultrasonic power (15 W and 20 W) and frequency (42 k Hz and 72 kHz) during experiments. The properties provided by the three electroplating processes and analyzed include: grain sizes, film elemental content analyses, surface microstructures, film hardness, corrosion resistance, surface roughness, crystalline structure and preferential growth, etc. From the results it was clear that quality of films produced by US-SC-CO2 was improved compared to that of films produced by silent SC-CO2, which itself was better than those produced by conventional electroplating. However, when US power was varied we observed a decline in the mechanical properties of the produced films.The combination of ultrasonic agitation with SC-CO2 allows for improved mechanical properties such as: lower surface roughness, finer grain size and surface morphologies, increased corrosion resistance and film hardness. The ultrasound agitation applied to SC-CO2 electroplating enhanced the formation of alloyed metal as ultrasonic agitation increased the electrolyte flowability during electroplating process resulting in increased mass transfer while at the same time achieving a surface cleaning effect which removed metal ions with poor adhesion and other unwanted particles. Moreover, application of ultrasonic agitation avoids the use of surfactants so only changes to the physical phenomena and no changes to the chemical composition of the deposited thin films were observed, meaning less pollution to the electrolyte and higher purity of the deposited films.The US-SC-CO2 electroplating method described in this work effectively enhanced the mechanical properties of the deposited thin films compared to those produced by both silent SC-CO2 and conventional electroplating processes.  相似文献   
27.
28.
The inherent periodically arranged M−NX, M−SX and M−OX units (M are usually Fe, Co, Ni, etc.) in metal–organic frameworks (MOFs) can be promising active centers in electrocatalysis. In previous studies, MOFs were usually constructed by energy-consuming hydro- or solvo-thermal reactions. Ultrasonic synthesis is a rapid and environment-friendly technique when envisaging MOFs’ industrial applications. In addition, different synthetic pathways for MOFs may lead to difference in their microstructure, resulting in different electrocatalytic performance. Nevertheless, only a handful of MOFs were successfully prepared by ultrasonic synthesis and few were applied in electrochemical catalysis. Herein, we constructed Ni/Co-catecholates (Ni/Co-CATs) synthesized by one-step ultrasonic method (250 W, 40 KHz, 25 W/L, Ultrasonic clearing machine) and compared their performance in oxygen reduction reaction (ORR) with that of Ni/Co-CATs synthesized by hydrothermal method. Ni-CAT and Co-CAT prepared by ultrasonic showed the half-wave potential of −0.196 V and −0.116 V (vs. Ag/AgCl), respectively. The potentials were more positive than those prepared by hydro-thermal method. And they showed excellent electrochemical stability in neutral solution. The latter was only 32 mV lower than that of commercial Pt/C. The improved performance in ORR was attributed to higher specific surface area and mesopore volume as well as more structural defects generated in the ultrasonic synthesis process, which could facilitate their exposure of electrocatalytic active sites and their mass transport. This work gives some perspective into cost-effective synthetic strategies of efficient MOFs-based electrocatalysts.  相似文献   
29.
Traditional preparation of protein particles is usually complex and tedious, which is a major issue in the development of Pickering high internal phase emulsions (HIPEs). In this study, a facile and in-situ method for the preparation of food-grade Pickering HIPEs was developed using ultrasound pre-fractured casein flocs. The ultrasonic-treated casein protein and resulting Pickering HIPEs were characterised using particle size distribution, confocal laser scanning microscopy (CLSM), cryo-SEM, and rheological measurement. The results indicated that pH values of casein and ultrasonic power level were key parameters for casein protein dispersion into nanoparticles to form o/w Pickering HIPEs. In optimal conditions, the hexagons of emulsion droplets were close together, and the emulsions formed with ultrasonic caseins exhibited gel-like behaviour. Additionally, ultrasonic microscale-sized caseins (about 25 μm) disappeared upon the use of high speed homogenisation during the formation of HIPEs, while the chemical distribution revealed by confocal laser scanning microscopy indicated that the dispersive nanoparticles from casein proteins were evidently absorbed on the interface of HIPEs (cryo-SEM). These findings prove that ultrasound is an effective tool to loosen casein flocs to induce the in-situ formation of stabilised Pickering HIPEs. Overall, this work provides a green and facile route to convert edible oil into a soft solid, which has great potential for applications in biomedical materials, 3D printing technology, and various cosmetics.  相似文献   
30.
In this study, an examination on the spectral, microstructural, and magnetic characteristics of Eu–Nd double-substituted Ba0.5Sr0.5Fe12O19 hexaferrites (Ba0.5Sr0.5NdxEuxFe12−2xO19 (x = 0.00–0.05) HFs) fabricated by an ultrasonic-assisted approach has been presented. An UZ SONOPULS HD 2070 ultrasonic homogenizer with frequency of 20 kHz and power of 70 W was used. The chemical bonding, structure and the morphology of the products were evaluated by Fourier-Transform Infrared (FT-IR) Spectroscopy, XRD (X-ray diffraction), scanning and transmission electron microscopy and techniques. The textural properties of the prepared nanomaterials were examined by using the Brunauer-Emmett-Teller (BET) method. The magnetic properties were studied using a vibrating sample magnetometer (VSM) at room temperature (RT) and low temperature 10 K. The magnitudes of various magnetic parameters including Ms (saturation magnetization), Mr (remanence) and Hc (coercivity) were estimated and evaluated. The M-H loops revealed the hard ferrimagnetic nature for all products at both temperatures. The Ms and Mr values showed a decreasing tendency with increasing degree of Eu3+ and Nd3+ substitutions whereas Hc values displayed an increasing trend. At RT, Ms, Mr and Hc values lie in the ranges of 63.0–68.8 emu·g−1, 24.6–39.2 emu·g−1 and 2252.4–2782.1 Oe, respectively. At 10 K, the values of Ms, Mr and Hc lie between 87.5–97.1 emu·g−1, 33.5–40.1 emu·g−1 and 2060.6–2417.2 Oe, respectively. The observed magnetic properties make the prepared products promising candidates to be applied in the recording media.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号